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ABSTRACT

A stratification and manifold learning approach for analyz-

ing High Angular Resolution Diffusion Imaging (HARDI)

data is introduced in this paper. HARDI data provides high-

dimensional signals measuring the complex microstructure

of biological tissues, such as the cerebral white matter. We

show that these high-dimensional spaces may be understood

as unions of manifolds of varying dimensions/complexity and

densities. With such analysis, we use clustering to character-

ize the structural complexity of the white matter. We briefly

present the underlying framework and numerical experiments

illustrating this original and promising approach.

Index Terms— Clustering methods, Density measure-

ment, Point processes, Poisson processes, Unsupervised

learning.

1. INTRODUCTION

Diffusion MRI is a powerful extension of MRI that maps how

local diffusion affects the MR signal, in multiple sampling di-

rections, providing exquisite insight into local white matter

fiber orientation. Water diffusion in the brain occurs prefer-

entially along fiber bundles and is hindered in orthogonal di-

rections, reflecting brain architecture at a microscopic scale.

In the Diffusion Tensor (DT) model [1], a tensor describes

local 3D diffusion as the 3 × 3 covariance matrix of a Gaus-

sian distribution, modeling the averaged diffusion properties

of water molecules (in a typical 1-3mm sized voxel). High

Angular Resolution Imaging (HARDI) overcomes limitations

of DTI for characterizing complex tissue geometries such as

fiber crossing, measuring diffusion along 30-100 or more di-

rections uniformly distributed on the sphere. From this high-

dimensional signal Sj(x), j = 1, ..., n, where x ∈ Ω ⊂ R
3

is a voxel of interest and Ω the acquisition grid, spherical

functions such as the ADC profile or the Orientational Dis-

tribution Function (ODF) may be approximated using a mod-

ified spherical harmonic (SH) basis [2]. The ODF provides

a non-parametric model of fiber distribution, and is the radial

projection of the underlying probability density function for

molecular motion.
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Analyzing the structure of such complex datasets will lead

to a better understanding of brain tissue microstructure and

connectivity. Methods such as [3, 4, 5] have been proposed

to characterize the anisotropy of tissues and differentiate be-

tween isotropic, mono- and multi-fiber configurations, from

the SH expansion or full profile of the ADC and from ODFs

[6]. These techniques consider each voxel independently and

do not try to explain the dataset’s global structure.

Concepts from Riemannian geometry (e.g., [7, 8] and ref-

erences therein) and manifold learning, [9], have been used

to characterize the distribution of tensors, perform statistical

analysis and segment DTI, e.g., using diffusion maps to clus-

ter ODF fields [10]. These approaches consider the elements

of interest (tensors, ODFs) on a single manifold (e.g., a sub-

manifold of R
6 in the tensor case). However, diffusion MRI

data does not belong to a single manifold but to a stratifica-
tion, i.e., the union of manifolds with different dimensions

(complexities) and densities. Regions with or without fiber

crossings clearly belong to manifolds with different dimen-

sionality/complexity (requiring a different number of param-

eters). The single dimension (complexity) assumption is ac-

curate only for small regions. The effort should then switch

toward the study of stratifications [11], of which manifolds

are a particular case. Studying the different manifolds in the

data may also indicate the existence of different complexities

in the data. Here we use stratification to quantify the local

complexity of DTI and HARDI datasets and relate these find-

ings to neuro-anatomical knowledge.

As we show experimentally, we can cluster diffusion MRI

datasets by considering them as point clouds in R
m (m ≥ 6

depends on the order of the SH approximation of ODFs),

without any spatial knowledge. We show that the estimated

complexity correlates with the expected fiber geometry in

well-known regions of interest.

2. STRATIFICATION LEARNING

A framework for the regularized and robust estimation of

non-uniform dimensionality and density in high-dimensional

noisy data, i.e., stratifications, was introduced in [11]. High-

dimensional sample points are modeled as a process of Trans-

lated Poisson mixtures, with regularizing restrictions, and a

noise model is incorporated. Levina and Bickel [12] proposed

a geometric and probabilistic method to estimate the local di-
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mension and density of point cloud data. In [11] we showed

how noise is naturally incorporated in this model, to obtain a

dimension estimator which is robust to noise (noise brings the

data outside of the manifold into the ambient space, thereby

misleading the dimensionality computation). We tackle the

more general case where the point cloud data is a sampling of

two or more manifolds of different dimensions and densities

(a stratification); we cluster the noisy data points according

to these parameters. We do not assume subspaces are linear

(e.g., [13]), and we simultaneously estimate the soft cluster-

ing and the intrinsic dimension and density of the clusters

while being robust to noise and outliers.

If we sample an m-dimensional manifold with T points,

the proportion of points falling into a ball around xt is k
T ≈

ρ(xt)V (m)Rk(xt)m [12]. The given point cloud, embedded

in high dimensions D, is X = {xt ∈ R
D; t = 1, . . . , T},

k is the number of points inside the ball, ρ(xt) is the local

sampling density at point xt, V (m) is the volume of the unit

sphere in R
m, and Rk(xt) is the Euclidean distance from xt to

its k-th nearest neighbor (kNN). The inhomogeneous process

N(R, xt), which counts the number of points falling into a

small D-dimensional sphere B(R, xt) of radius R centered

at xt, is a binomial process. Under certain assumptions it can

be approximated by a Poisson process and the rate λ of the

counting process N(R, xt) can be expressed as λ(R, xt) =
ρ(xt)V (m)mRm−1. The local intrinsic dimension estimator

at each point xt is obtained from the Maximum Likelihood

estimator based on a Poisson distribution with this rate.

Usually, noise contaminates the point samples, so the

observed point process is not a simple sampling of a low-

dimensional manifold but a perturbation of this sample pro-

cess. We model this with a Translated Poisson Process [14],

which translates an underlying (unobservable) point process

into an output (observable) point process. The input and

output spaces of the points are not necessarily of the same

dimension. An input point at location x in the input space X
is randomly translated to a location z in the output space Z,

according to a conditional probability density f(z|x), called

the transition density. We consider the particular case where

each point is translated independently of the others and no

deletions or insertions occur in the translation process. Then,

any translated Poisson process with an integrable intensity

function {λ(x) : x ∈ X} is also a Poisson process with

intensity μ(z) =
∫

X
f(z|x)λ(x)dx [14].

Since the intensity of the Poisson process in our model is

parametrized by the Euclidean distances of the points (and not

by the points themselves), we consider a random translation

in the distances. This means that we do not observe the origi-

nal distances but noisy distances. Let f(s|r) be the transition

density which defines the random process which translates a

distance r in the input space to a distance s in the observ-

able space. If λ(r, xt) is the local rate of the Poisson process

which defines the counting process in the input space, then

μ(s), the intensity of the Poisson process in the output space,

is given by μ(s, xt) =
∫ R′

0
f(s|r)ρ(xt)V (m)mrm−1dr. We

consider R′ > R since points originally at distance greater

than R from xt can be placed within a distance less than R
after the translation process.

Maximizing the likelihood of the new Translated Poisson

process, we obtain the following expression for the local di-

mension m(xt) at point xt when we use the k nearest neigh-

bors (k-NN) instead of the points closer than R,

m(xt)=

[
1

k − 1

k−1∑
i=1

∫ R′

0
f(Ri(xt)|r)rm−1 log Rk(xt)

r dr∫ R′

0
f(Ri(xt)|r)rm−1dr

]−1

,

(1)

where, by an abuse of notation, we identify m = m(xt) in

the right hand side. This expression reduces to the Levina

and Bickel estimator [12] when f(s|r) = δ(s − r), i.e., there

is no translation of the original points (the noise-free case).

Equation (1) is a nonlinear recursive expression in m which is

difficult to solve. We approximate it by an easier to compute

closed expression, with explicit bounds on the approximation,

m(xt) ≈
[

1
k − 1

k−1∑
i=1

∫ R′

0
f(Ri|r) log Rk

r dr∫ R′

0
f(Ri|r)dr

]−1

, (2)

see [11] for details.

These estimators are local as they come from a Maximum

Likelihood (ML) at each point xt based on a Translated Pois-

son distribution modeling the counting process in the local

ball B(R, xt). We compute an ML on the whole point cloud

data at the same time (not just for each point independently),

based on a Translated Poisson Mixture Model, which accom-

modates noise and different classes (each with its own dimen-

sion and sampling density). This technique gives a soft clus-

tering according to dimensionality and density, and estimates

both quantities for each class. This Translated Poisson Mix-

ture Model (TPMM) is solved with an EM algorithm, which

leads to explicit estimations of each cluster dimensionality

and density, as well as the probability of each point to be-

long to each cluster, see [11] for details on the theory and the

very efficient computation.

We tested the framework for clustering real data in com-

puter vision applications (scanned digits, faces under vary-

ing pose and illumination, different activities and motion in

video), obtaining state-of-the-art results for the soft clustering

on non-linear stratifications. Here we extend this framework

to the stratification defined by HARDI, providing insight into

the varying complexity of brain connections.

3. BRAIN MICROSTRUCTURE COMPLEXITY

Diffusion-weighted images Sj , j = 1...n, were acquired on

a 4T Bruker/Siemens MRI scanner using an optimized diffu-

sion tensor sequence.1 30 images were acquired, 3 with no

1Imaging parameters were: 21 axial slices (5 mm thick), FOV=23 cm,

TR/TE=6090/91.7 ms, 0.5 mm gap, with a 128 × 100 acquisition matrix
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diffusion sensitization S0 and n=27 diffusion-weighted im-

ages at b=1100 s/mm2. Gradient directions were evenly dis-

tributed on the hemisphere.

Diffusion tensors were computed with the standard least-

squares procedure using the linearized Stejskal-Tanner equa-

tion for free anisotropic diffusion [15]. The signal attenua-

tion S(qj , τ) obtained with the classical Pulsed Gradient Spin

Echo (PGSE) sequence, for a given diffusion gradient wave-

vector qj and diffusion time τ , is related to the displacement

probability function of water molecules P (r, τ) by a Fourier

transform, S(qj , τ) = S0

∫
R3 P (r, τ)e−2πiqT

j rdr. ODFs, de-

fined as the radial projection of the PDF P (r, τ), only con-

serve the angular information of P , which is sufficient to re-

cover the underlying orientation distribution of fibers. ODFs

were approximated by a linear transform of the signals SH co-

efficients S(q, τ) [2]. We examined the complexity of the sig-

nal attenuation, diffusion tensors, and SH series coefficients

of the ODFs. They respectively correspond to point clouds

in R
30, R

6 and R
(l+1)(l+2)/2, for SH series of order l. The

k-NN estimation of the local dimension only weakly exploits

the spatial information provided by the regular sampling of

points on the acquisition grid Ω ⊂ R
3, leaving room for fu-

ture improvements.

We first studied how the input model influences the con-

sistency of the dimension/density estimation and clustering.

In neighborhoods of size k = 60, our algorithm analyzed

the raw HARDI signal (points in R
30), the 4th and 6th order

ODFs (points respectively in R
15 and R

28), and their sharp-

ened versions (Fig. 1). ODF sharpening, [2], enhances the

angular contrast of the spherical functions to better differenti-

ate fiber compartments and potentially improve tractography.

Clusterings from 4th and 6th order ODFs are almost identi-

cal, as 30 gradients may be insufficient to fit a detailed 6th

order model.

Fig. 2. Increasing complexity in the forceps minor.
However, clusterings obtained from the ODFs are clearly

better than those from the raw HARDI data; we can read-

(1.8 mm in-plane resolution).

Table 1. Influence of the input model on complexity.
Color Red Green Blue Yellow L. blue Purple
HARDI
Dim. 1.55 4.88 5.92 4.32 5.59 5.67

Dens. 9.27 16.01 10.69 2.42 13.18 15.85

Prob. 0.65 0.18 0.005 0.002 0.026 0.088

ODF 4
Dim. 1.33 4.53 4.64 2.57 5.32 5.41

Dens. 12.53 26.70 20.59 7.74 25.97 28.57

Prob. 0.70 0.16 0.014 0.002 0.038 0.092

ODF 6
Dim. 1.46 5.04 5.15 4.77 5.61 5.83

Dens. 10.79 21.84 15.38 7.53 19.33 22.30

Prob. 0.70 0.16 0.011 0.002 0.035 0.099

ily distinguish (Fig. 1) the gray matter in green, com-

plex white matter in purple (e.g., forceps minor/major,

anterior/posterior corona radiata or superior longitudinal

fasciculus), anisotropic white matter in light blue (e.g.,

genu/splenium of the corpus callosum or internal capsule),

and highly anisotropic white matter in blue (e.g., genu of the

corpus callosum, cortico-spinal tract). However, the cluster

dimensions/densities do not match the expected decrease in

complexity when going from complex to very anisotropic

white matter (Table 1), perhaps because the raw HARDI

signal is noisy. 4th and 6th order ODFs regularize the spher-

ical distribution by only considering low-frequency spher-

ical harmonics and impose some smoothness on the fitted

ODFs. This translates into improved clustering results and

estimated dimensions/densities nicely matching the white

matter complexity. The complex white matter is perfectly

labeled (purple; Fig. 1), whereas some large areas were

missing (and labeled as gray matter) when working on the

raw HARDI signal. Highly anisotropic areas (blue) such as

the genu/splenium of the corpus callosum and cortico-spinal

tract are more consistently labeled. Sharpening the 4th order

ODFs had little effect, but decreased clustering accuracy for

the 6th order ODFs, perhaps by enhancing high-frequency

noise in the higher-order model.

We compared our estimates to the known complexity of

white matter configurations, in the genu of corpus callosum

and forceps minor. Callosal fibers are tightly packed at the

interhemispheric plane, but diverge and mingle with other

fiber bundles as they progress toward the frontal lobes. Our

method identifies and quantifies this increase in complexity.

The dimension and density of the four submanifolds increase

(Fig. 2) as fibers leave the very anisotropic genu region. This

clearly demonstrates our methods value for studying white

matter microstructure.

Finally, we applied our algorithm to the 6-dimensional

diffusion tensor dataset, clearly differentiating the gray/white

matter and CSF. However, the difference in complexity be-

tween gray and white matter was low and the CSF was

clearly isolated, although it was not when working with

ODFs. In gray and white matter, diffusion tensors have dif-

ferent anisotropy but similar mean diffusivity (Fig. 3), so
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Fig. 1. Influence of the input model on the labeling of 2 axial slices.

Fig. 3. Correct labeling of the ventricles from DTI.

the model complexity stays roughly constant. Conversely,

HARDI differentiated gray matter from complex, anisotropic

and even very anisotropic white matter, but could not clearly

label the CSF where ODFs are intrinsically 2D, they have

great angular resolution but lack the amplitude information

of DTI (see center panel, Fig. 3).

4. CONCLUDING REMARKS

We presented a stratification learning method to study the

non-uniform complexity of HARDI datasets. We labeled

known neuro-anatomical areas by examining the complexity

of the point clouds obtained from a set of Orientational Dis-

tribution Functions. Considering such high-dimensional data

as belonging to a union of manifolds is a natural and powerful

way to understand cerebral white matter connectivity.
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